CHEMISTRY SYLLABUS OUTLINE

Teaching hours: SL 110h, HL 180h

Experimental programme: SL 40h, HL 60h

Class 3IB

Structure

Structure refers to the nature of matter from simple to more complex forms

Structure 1.

Models of the particulate nature of matter

- Structure 1.1— Introduction to the particulate nature of matter
- Structure 1.2—The nuclear atom
- Structure 1.3—Electron configurations
- Structure 1.4— Counting particles by mass: The mole
- Structure 1.5—Ideal gases

Structure 2.

Models of bonding and structure

- Structure 2.1—The ionic model
- Structure 2.2—The covalent model
- Structure 2.3—The metallic model
- Structure 2.4—From models to materials
- Structure 3.

Classification of matter

- Structure 3.1— The periodic table: Classification of elements
- Structure 3.2— Functional groups: Classification of organic compounds

Reactivity

Reactivity refers to how and why chemical reactions occur

Reactivity 1. What drives chemical reactions?

- Reactivity 1.1—Measuring enthalpy changes
- Reactivity 1.2—Energy cycles in reactions
- Reactivity 1.3—Energy from fuels
- Reactivity 1.4—Entropy and spontaneity (Additional higher level)

Practical work, Collaborative sciences project

Reactivity

Reactivity refers to how and why chemical reactions occur

Reactivity 2. How much, how fast and how far?

- Reactivity 2.1—How much? The amount of chemical change
- Reactivity 2.2—How fast? The rate of chemical change
- Reactivity 2.3—How far? The extent of chemical change

Reactivity 3.

- What are the mechanisms of chemical change?
- Reactivity 3.1—Proton transfer reactions
- Reactivity 3.2—Electron transfer reactions
- Reactivity 3.3— Electron sharing reactions
- Reactivity 3.4— Electron-pair sharing reactions

Practical work, Scientific investigation

Revision before final exams