IB WORLD SCHOOL Biology syllabus & course of study (based on Biology guide first assessment 2025)

A. COURSE AIMS

Biology is a study of life. Of all the sciences, biology is a study that takes more of a pragmatic view than a theoretical approach. The earliest evidence of life on Earth dates from at least 3.5 billion years ago, since then life has diversified tremendously, occupying a wide variety of niches. This diversity makes biology both a deeply fascinating and significantly challenging study. Unifying themes provide frameworks for interpretation and help us make sense of living world: Form and function, Unity and diversity, Continuity and change, and Interaction and interdependence.

The scale of life in biology ranges from the molecules and cells of organisms to ecosystems and the biosphere. At each level of biological organization, different properties exist. Living systems are based on interactions, interdependence and integration of components between all levels of biological organization.

A student of biology should gain not only a conceptual understanding of subject, but also an awareness of how biologists construct knowledge claims and the limitations of these methods.

B. Structure of the syllabus and conceptual understanding

The biology syllabus comprises four themes, each made up of two concepts. Each theme is a lens through which the syllabus content can be viewed.

Theme A: Unity and diversity

Theme B: Form and function

Theme C: Interactions and interdependence

Theme D: Continuity and change

The arrangement of syllabus content follows four levels of biological organization, which also serve as conceptual lenses.

Level 1: Molecules

Level 2: Cells

Level 3: Organisms

Level 4: Ecosystems

C. COURSE OBJECTIVES

The course enables students, through the overarching theme of the Nature of Science, to:

- 1. Develop conceptual understanding that allows connections to be made between different areas of the subject, and to other Diploma Programme sciences subjects.
- 2. Acquire and apply a body of knowledge, methods, tools and techniques that characterize science.
- 3. Develop the ability to analyse, evaluate and synthesize scientific information and claims.
- 4. Develop the ability to approach unfamiliar situations with creativity and resilience.
- 5. Design and model solutions to local and global problems in a scientific context.
- 6. Develop an appreciation of the possibilities and limitations of science.
- 7. Develop technology skills in a scientific context.

- 8. Develop the ability to communicate and collaborate effectively.
- 9. Develop awareness of the ethical, environmental, economic, cultural and social impact of science.

D. COURSE OVERVIEW

D.1 Course content

Theme A Unity and diversity

Common ancestry has given living organisms many shared features while evolution has resulted in the rich biodiversity of life on Earth.

- 1. Molecules: water, nucleic acids
- 2. Cells: origin of cells (HL only), cell structure, viruses (HL only)
- 3. Organisms: diversity of organisms, classification and cladistics (HL only)
- 4. Ecosystems: evolution and speciation, conservation and biodiversity

Theme B Form and function

Adaptations are forms that correspond to function. These adaptations persist from generation to generation because they increase the chances of survival.

- 1. Molecules: carbohydrates and lipids, proteins
- 2. Cells: membranes and membrane transport, organelles and compartmentalization, cell specialization
- 3. Organisms: gas exchange, transport, muscle and motility (HL only)
- 4. Ecosystems: adaptation to environment, ecological niches

Theme C Interaction and interdependence

Systems are based on interactions, interdependence and integration of components. Systems result in emergence of new properties at each level of biological organization.

- 1. Molecules: enzymes and metabolism, cell respiration, photosynthesis
- 2. Cells: chemical signalling (HL only), neural signalling
- 3. Organisms: Integration of body systems, defence against disease
- 4. Ecosystems: populations and communities, transfer of energy

Theme D Continuity and change

Living things have mechanisms for maintaining equilibrium and for bringing about transformation. Environmental change is a driver for evolution by natural selection.

- 1. Molecules: DNA replication, protein synthesis, mutation and gene editing
- 2. Cells: cell and nuclear division, gene expression (HL only), water potential
- 3. Organisms: reproduction, inheritance, homeostasis
- 4. Ecosystems: natural selection, stability and change, climate change

D.2 Other requirements

Experimental programme: practical work 20 hours SL/ 40 hours HL; collaborative science project both SL/HL 10 hours; scientific investigation both SL/HL 10 hours **D.3 Textbook & reference book**

E. COURSE OF STUDY

Themes	C	ontent – topics and guiding questions	Time provision
Unity and diversity - molecules	Water	What physical and chemical properties of water make it essential for life? What are the challenges and opportunities of water as habitat?	2 hours AHL 1 hour

r			
	Nucleic acids	How does the structure of nucleic acids allow hereditary information to be stored? How does the structure of DNA facilitate accurate replication?	3 hours AHL 2 hours
Unity and diversity - cells	Origin of cells	What plausible hypothesis could account for the origin of life? What intermediate stages could there have been between non-living matter and the first living cells?	2 hours
	Cell structure	For what reasons is heredity an essential feature of living things? What is needed for structures to be able to evolve by natural selection?	4 hours AHL 1 hour
	Viruses	What explains the use of certain molecular building blocks in all living cells? What are the features of a compelling theory?	AHL 2 hours
Unity and	Diversity of	What is a species?	3 hours
diversity -	organisms	What patterns are seen in the diversity	AHL 2
organisms		of genomes within and between species?	hours
	Classification	What tools are used to classify organisms	AHL 3
	and cladistics	into taxonomic groups?	hours
		How do cladistic methods differ from traditional taxonomic methods?	
Unity and	Evolution and	What is evidence for evolution?	4 hours
diversity –	speciation	How do analogous and homologous	AHL 1
ecosystems		structures exemplify commonality and diversity?	hour
	Conservation of biodiveristy	How does the theory of evolution by natural selection predict and explain the unity and diversity of life on Earth? What counts as strong evidence in biology?	3 hours
Form and function - molecules	Carbohydrates and lipids	In what ways do variations in form allow diversity of function in carbohydrates and lipids? How do carbohydrates and lipids compare as energy storage compounds?	4 hours
	Proteins	What is the relationship between amino acid sequence and the diverisity in form	2 hours AHL 2
	D.f. a. a. l	and function of proteins?	hours
Form and	Membranes	How do molecules of lipid assemble into	4 hours
function -	and	biological membranes?	AHL 2
cells	membrane	What determines whether a substance	hours
	transport	can pass through a biological	

		membrane?	
	organelles and compartmenta lization	How are organelles in cells adapted to their functions? What are the advantages of compartmentalization in cells?	1 hour AHL 2 hours
	cell specialization	What are the roles of stem cells in multicellular organisms? How are differentiated cells adapted to their specialized functions?	2 hours AHL 1 hour
Form and function - organisms	gas exchange	How are multicellular organisms adapted to carry out gas exchange? What are the similarities and differences in gas exchange between a flowering plant and a mammal?	3 hours AHL 1 hour
	transport	What adaptations facilitate transport of fluids in animals and plants? What are the differences and similarities between transport in animals and plants?	3 hours AHL 2 hour
	muscle and motility	How do muscles contract and cause movement? What are the benefits to animals of having muscle tissue?	AHL 3 hours
Form and function - ecosystems	adaptation to environment	How are the adaptations and habitats of species related? What causes the similarities between ecosystems within a terrestrial biome?	3 hours
	ecological niches	What are the advantages of specialized modes of nutrition to living organisms? How are the adaptations of a species related to its niche in an ecosystem?	4 hours
Interaction and interdepen dence -	Enzymes and metabolism	In what ways do enzymes interact with other molecules? What are the interdependent components of metabolism?	SL 3 hours AHL 2 hours
molecules	Cell respiration	What are the roles of hydrogen and oxygen in the release of energy in cells? How is energy distributed and used inside cells?	SL 2 hours AHL 3 hours
	Photosynthesis	How is energy from sunlight absorbed and used in photosynthesis? How do abiotic factors interact with photosynthesis?	SL 3 hours AHL 3 hours
Interaction and interdepen dence -	Chemical signalling	How do cells distinguish between the many different signals that they receive? What interactions occur inside animal cells in response to chemical signals?	AHL only 4 hours

cells	Neural	How are electrical signals generated and	SL 3
cells		How are electrical signals generated and	
	signalling	moved within neurons?	hours
		How can neurons interact with other	AHL 3
		cells?	hours
Interaction	Integration of	What are the roles of nerves and	SL 5
and	body systems	hormones in integration of body	hours
interdepen		systems?	AHL 2
dence -		What are roles of feedback mechanisms	hours
organisms		in regulation of body systems?	
	Defence	How do body systems recognize	SL 5
	against disease	pathogens and fight infections?	hours
		What factors influence the incidence of	
		disease in populations?	
Interaction	Populations	How do interactions between organisms	SL 5
and	and	regulate sizes of populations in a	hours
interdepen	communities	community?	
dence -		What interactions with a community	
ecosystems		make its populations interdependent?	
ccosystems	Transfer of	What is the reason matter can be	SL 5
			hours
	energy and	recycled in ecosystems but energy can	nours
	matter	not?	
		How is energy that is lost by each group	
		of organisms in an ecosystem replaced?	
Continuity	DNA	How is DNA produced?	SL 2
and change	replication	How has knowledge of DNA replication	hours
- molecules		enabled applications in biotechnology?	AHL 2
			hours
	Protein	How does a cell produce a sequence of	SL 3
	synthesis	amino acids from a sequence of DNA	hours
		bases?	AHL 3
		How is the reliability of protein synthesis	hours
		ensured?	
	Mutation and	How do gene mutation occur?	SL 3
	gene editing	What are the consequences of gene	hours
		mutation?	AHL 2
			hours
Continuity	Cell and	How can large numbers of genetically	SL 3
and change	nuclear	identical calls be produced?	hours
- cells	division	How do eukaryotes produce genetically	AHL 1
		varied cells that can develop into	hour
		gametes?	
	Gene	How is gene expression changed in a	AHL 3
	expression	cell?	hours
	evhiession		nours
		How can patterns of gene expression be	
	\A/a+a :	conserved through inheritance?	
	Water	What factors affect the movement of	SL 2
	potential	water into or out of cells?	hours

		•	
		How do plant and animal cells differ in	AHL 2
		their regulation of water movement?	hours
Continuity	Reproduction	How does asexual reproduction	AL 5
and change		exemplify themes of change or	hours
- organisms		continuity?	AHL 3
		What changes within organisms are	hours
		required for reproduction?	
	Inheritance	What pattern of inheritance exist in	SL 5
		plants and animals?	hours
		What is the molecular basis of	AHL 3
		inheritance pattern?	hours
	Homeostasis	How are constant internal conditions	SL 2
		maintained in humans?	hours
		What are the benefits to organisms of	AHL 2
		maintaining constant internal	hours
		conditions?	
Continuity	Natural	What processes can cause changes in	SL 2
and change	selection	allele frequencies within a population?	hours
-		What is the role of reproduction in the	AHL 2
ecosystems		process of natural selection?	hours
	Stability and	What features of ecosystem allow	SL 4
	change	stability over unlimited time periods?	hours
		What changes caused by humans	AHL 2
		threaten the stability of ecosystems?	hours
	Climate	What are the drivers of climate change?	SL 3
	change	What are the impacts of climate change	hours
		on ecosystems?	AHL 1
			hour

F. ASSESSMENT

F.1 Assessment outline SL

External assessment 80%

Paper 1 - 1 hour and 30 minutes: multiple-choice questions; data-based questions Paper 2 - 1 hour and 30 minutes: data-based and short answer questions; extendedresponse questions

Internal assessment 20 %

The internal assessment consists of one task: scientific investigation. This component is internally assessed by the teacher and externally moderated by the IB at. The end of the course.

F.2 Assessment outline HL

External assessment 80%

Paper 1 – 2 hours: multiple-choice questions; data-based questions

Paper 2 – 2 hour and 30 minutes: data-based and short answer questions; extended-response questions

Internal assessment 20 %

The internal assessment consists of one task: scientific investigation. This component is internally assessed by the teacher and externally moderated by the IB at. The end of the course.